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In this paper we introduce a formula for the calculus of resistance to fracture for the composite plates with
arandom reinforcement’s distribution. Also, we give a formula for the calculus of upper limit of resistance to
fracture for the composite plates, described as depending on the volumetric proportion of reinforcement. As
applications, we give the variation of resistance to fracture depending on the volumetric proportion for two
types of composite materials and, in addition, we determine the characteristic curves and the resistance to

fracture for a traction test considering the two composite materials.
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The goal of damage is to predict the response of a
material in the presence of damage that initiates at some
stress state and generally increases with increasing stress
up to macroscopic crack initiation or failure; prediction of
the conditions for failure is also a fundamental goal of
damage mechanics. In general, damage may be thought
of a surface discontinuities (micro cracks) and volume
discontinuities (micro voids). Essentially all materials
exhibit cracks and voids at some scale; thus the “damage-
free” state is a function of the scale of the phenomena
under consideration.

The most common types of damage in fibrous
composites are fiber breakage, fiber/matrix debonding,
matrix cracks, fiber kinking and for large diameter fibers,
radial cracks in the fibers. We consider damage that can
only increase or remain constant over time; there is no
healing.

As damage occurs, the material loses stiffness and
exhibits nonlinear, inelastic response with permanent
strains after unloading. The inelastic response is the result
of sliding friction at damage sites as well as any inelastic
response of the constituent phases. Since the process is
irreversible, nonlinear analysis techniques must be
employed.

The earlier published works on damage mechanics
appear to be those by Kachanov [5] and Rabotnov [16] on
the application of a continuous damage variable to creep
failure of metals. The concept was generalized, within the
framework of irreversible thermodynamics, for isotropic
materials under multiaxial loads [3, 4, 6, 13-15].

The general damage theory that serves as the
foundation for this model was originally proposed in [7].
Later the general damage theory was adapted for
application to laminated composites [8]. The theory has
been shown to be very robust for predicting the damaged
response of composites under a wide variety of conditions.
It is based upon the method of local state expressed in
terms of state variables and the associated thermodynamic
forces. According to [13], “the method of local state
postulates that the thermodynamic state of a material
medium at a given point and instant is completely defined
by the knowledge of the values of a certain number of
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variables at that instant, which depend only upon the
(material) point considered. Since the time derivatives of
these variables are not involved in the definition of the state,
this hypothesis implies that any evolution can be
considered as a succession of equilibrium states.” [18].

For the most general configuration, Ladeveze’s theory
considers a composite to be a laminated structure
consisting of two elementary constituents: layers of
composite and interfaces that separate the composite
layers. The interface is considered to be a mechanical
surface connecting two adjacent composite layers; it is
included in the model only when delamination is of
interest. When delamination is not of interest, the model
is an assemblage of composite layers [19, 20].

The theory is called the “mesoscale” composite damage
theory because it is based upon the assumption that the
damage is uniform through the thickness of individual
layers of the composite [21], [22]. A layer is any continuous
thickness of plies which have identical fiber orientation.
Mesoscale is a term indicating that the scale of the analysis
is between micromechanics (i.e., the level of the fiber and
the matrix) and laminate analysis. The theory is based upon
the mean value of the stress in each layer and allows the
damage state to vary from layer to layer in a laminate.
When delamination is of interest, damage between layers
is introduced through consideration of damage to the
idealized interfacial layer, [11, 2]. Additional developments
of the model were concerned with the computation of the
intensities of the different damage mechanisms up to
ultimate fracture [9] and extension of the model to variable
temperature ranges [1].

The “mesoscale” composite damage theory assumes
that the response of a damaged layer, at any instant of time
(load state), can be expressed in terms of elastic moduli
degradation and inelastic strains due to damage and/or
matrix plasticity. Degradation of the elastic moduli is
expressed in terms of damage parameters that are
functions of the associated thermodynamic forces which
serve as damage evolution parameters. The modulus
degradation parameters are internal variables and the
thermodynamic forces are the corresponding associated
variables (in the thermodynamic sense). The theory
includes provisions for coupled damage evolution for the
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multi-axial states of stress that are typically present in
laminates, as well as differences in the effects of damage
evolution due to tensile and compressive normal stresses.
The latter feature allows for difference in material response
associated with crack opening and crack closure.

The form of the damage evolution law generally varies
with the type of material, reflecting the dependence on
the micro structural damage mechanisms. It is expected
that the fiber size, microstructure (or morphology) and
strength, matrix strength and fiber/matrix interfacial
strength all influence damage evolution. The micro-level
damage mechanisms are not identified explicitly in the
mesoscale damage model; damage evolution is based on
experimental observations of the response of a damage
layer. In this sense, the theory is phenomenological. The
theory allows the damage evolution law to change form
during the loading history as new damage mechanisms
occur.

The mesoscale composite damage theory has been
applied successfully to polymeric, metallic and ceramic
matrix composites made with continuous fibers, short
fibers or woven fabrics. A more general treatment of the
theory and references to other applications can be found
in [10].

Experimental part
The theoretical modell for determining the resistence to
fracture

To estimate of resistance to fracture of a composite
material we considered that fibers have an elastic behavior
untill fracture and the matrix has a nonlinear character in
case of exceeding maximum deformation for the fibers’
fracture. In the case of a unidirectional composite strechted
along the fibers, fracture happens when the fibers fail. The
practical results indicates that the maximum value of
medium strain has lower values than theoretically obtained
in the previous hypothesis. The explanation consists in the
fact that not all fibers have the same resistance to fracture,
some give in and the intact fibers take over the entire stress.

In the case of transversal stretching related to the fibers’
direction or shearing, it is considered that fracture
resistances coincide with the matrix’s resistance to fracture
for each type of stress.

In the case of complex stress, when the tensor of
tensions has more non zero components, fracture criteria
are used. These keep count of the size of each separate
tension as well as their correlated effect.

According to the Hill criterion [17], the normal tension
of fracture for an unidirectional composite, following a
certain direction, is given by the relation:
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in which:
- Bis angle between the considered direction and fibers
directions;
- 0, is the normal tension of fracture in the direction of
flbers
- 0, is the normal tension of fracture in the transversal
direction on fibre;
-0, is the tangentlal tension of fracture which acts in
orthotropy planes of the plate.
In accordance with Hill criterion, the tangential tension
of fracture in a non orthotropic plane, can be calculated
with the relation [17]:
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In practice are used plane composite plates which need
to have the same resistance properties along any direction
in the plate’s plane. This fact is possible if:

o-r = O-r,!

=0, ®
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and

for any angle 6.
The relations (3) and (4) are satisfied only if:

o, =3,. ®)

This relation is very restrictive, but we accept by
hypothesis that it remains valid for the case in which fibers
have a random distribution. We assimilate these plates,
from resistance’s point of view, with composite plates for
which fibers are equally distributed after any direction in
the plate’s plane.

In this conditions in which plane isotropy is accepted,
we consider the tension of fracture o = for composite as
an average value, obtained by integrating the relation (1)
and then applying a medium relation. Thus we have:
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Starting from this relation we determine a maximum
value on the form (which can’t be overtaken by the value
of composite’s tension of fracture):
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in which:
- 0 is the tension of fracture to stretch the matrix;
- 0.'is the tension of fracture to stretch the fibers;
- ﬁ is the elasticity modulus of matrix;
E Is the elasticity modulus of fibers.

In the figure 1 is gived the variation of resistence to
fracture for a plate from fireproof phenollc resin reinforced
with fiberglass (E_ = 3000 MPa, o, = 40 MPa, E, = 74000
MPa, o,= 2500 MPa).

In the figure 2 is given the variation of resistance to
fracture for a plate from poliesteric orthoftalic resin
reinforced with fiberglass (E_ = 4000 MPa, o, = 80 MPa,
E, = 74000 MPa, G, = 2500 M#Té)

If the volumetric proportion is small (V<0.3), then the
properties can be very different from one point to another
in the plate’s plane. The hypothesis of isotropy isn’t valid
any more. For this reason, the graphics showing the
variation of resistance to fracture are drawn for a volumetric
proportion V [0 [0.3, 0.7].

Results and discussions

We tested to traction two sets of samples, thus:

- a set of tests for a composite plate from phenolic resin
reinforced with fiberglass, having the volumetric proportion
of reinforcement V = 0.45 and with the chemical
composition presented in figure 3 (sample 1);

- a set of tests for a composite plate from poliesteric
resin reinforced with fiberglass, having the volumetric
proportion of reinforcement V = 0.55 and with the
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_ N _ ) In figure 7 (sample 1) and in figure 8 (sample 2) the
chemical composition presented in the figure 4 (sample way in which we achieved the fracture is presented in

2). section.

The test boards used and the way we achieved fracture, From these figures we notice that fibers do not have a
are presented in figure 5 (sample 1) and in figure 6 (sample preferential direction of orientation and we can’t
2). evidentiate a certain order. Hence, these plates can be

associated with plates which have a random distribution
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of reinforcement and thus we consider that we can apply
the results obtained using the relation (6).

For the sample 1 in the fracture area is observed the
total snatching of matrix from fibers. In the case of sample
2, the adherence among fibers and matrix is better. The
matrix also breaks, as shown by the traces of resin in the
fracture area.

In figure 9 (sample 1) and in figure 10 (sample 2) we
present the characteristic curves for the composite
materials of each plate.

On the figures 9 and 10 we notice that the constituent
equation has a near linear character.

For the sample 1 we obtained the tension of fracture
value of 53 MPa, and for the sample 2 the tension of fracture
is 116 MPa.

Conclusions

In the case of composite materials for which the
reinforcement has a random distribution, the resistance
to fracture is smaller than in unidirectional composites’
case. This thing can be explained considering the smaller
ammount of fibers that take over the stress with respect to
the total number of fibers built in the composite. Moreover,
the percentage of woven fibers is smaller than the one in
case of unidirectional composites.
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Because the composite plates with random distribution
of reinforcement can be assimilated as having isotropy in
the plate’s plane, it results that they will have properties
closer to matrix properties. This fact happens because the
fibers present a high grade of anisotropy.

The analyse of sections in which fracture took place and
the diagrams of characteristic curves show that fractures
were sudden, without the existence of a flow area. This
fact confirms that damage of composite material appears
at the fibers’ fracture.

Two types of fracture can appear:

-a type of fracture in which the matrix is detached from
the fibers in the fracture area; this is justified by the thing
that after breaking, the fibers come off the matrix;

-a type of fracture in which, simultaneous with fibers’
fracture, the matrix fractures also,still keeping contact with
the fibers in the fracture area.

Theoretically, the resistance to fracture, obtained with
the relation (6), for the sample 1 is 55.8 MPa, and for the
sample 2 is of 111.4 MPa.

Comparing this with the experimental results we noticed
that:

-for the sample 1 the theory gives a greater value for
resistance to fracture;

-for the sample 2 the theory gives a lower value.
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Both values are compared to the ones experimentally
obtained.

We can explain it because for sample 1 the fracture is
~clean” (without traces of matrix on the fibers) and for
sample 2 stresses are partially taken over by the matrix.

In the case of composite plate with phenolic resin, the
specific deformation to fracture is a little over 2% and the
fracture is characterized as ,,fragile” fracture. For the plate
with poliesteric resin, the specific deformation to fracture
isover 6%, being also present ductile fracture phenomena.
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